R is a complete ordered field including two special elements 0, 1 (zero, one) with +, x (addition, multiplication), and order

$x \leq y$ (E) x $y \leq y$, $x \leq y$	3trivial
10.100	
11.001	
11.001	
10.100	
11.001	
10.100	
11.001	
12.10	
13.10	
14.10	
15.10	
16.10	
17.10	
18.10	
19.10	
10.10	
11.10	
12.10	
13.10	
14.10	
15.10	
16.10	
17.10	
18.10	
19.11	
10.10	
11.10	
12.10	
13.10	
14.10	
15.10	
16.10	
17.11	
18.10	
19.11	
10.10	
11.11	
12.10	
13.11	

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $(i) - (iv)$ can be summarized as $\left(R,t\right)$ is a commutative (Abelian) group. $(Vi) - (ix)$ equivalent to saying that $(1Rf_{\emptyset}, \cdot)$ is a commitative group $(i) = (x)$ can be stated as β is a field I d II together means that IR is an ordered field Remark. The property $1 \cdot 0 = 0$ can be proved by the other proprieties of R: $|.0 = |.0 + 0) = |.0 + 1.0$ and so $1 \cdot 0 = 0$ (by adding the inverse $(w \cdot r + +)$ -(1.0) of $\frac{1}{2}$. N otro + Ex. (not yet need $\overline{111}$).

¹ Uniqueness

2. Unsval "Smallrdm, Lams" hold (in R.)
\n
$$
x+3 = y+3 \Rightarrow x = y
$$

\n $x3 = y3, 3+0 \Rightarrow x=y$
\n $(-1) x = -x$ (:: LHS has the Moppula)
\n $(-1) x = -x$ (:: LHS has the Moppula)
\n $(-1) x = -x$ (:: LHS has the Moppula
\n $(-1) x + x = (-1) + 1) x = 0. x = 0$
\n $(-1) x + x = (-1) + 1) x = 0. x = 0$
\n $(-1) x + x = 0$
\n $(-1) x = -x$ (involving
\n $(-1) x = -x$
\n $(-1) x = -x$

Notward Numbers 4 Math. Indudon (MZ).
Only the axioms Z 4Z).
Depthidon: M 16 defined to be the
Smallub subsets 918. Set:
(i) $1 \in \mathbb{N}$
(ii) M 15 inductive
MathIndudim(MZ), Suppose P(n) 16 n
Statimul (MZ), Suppose P(n) 16 n
Statimul (MZ), Suppose P(n) 16 n
Statimul (MZ), Suppose P(n) 16 n
P(n) 16 true M (N) 16 n
Then P(n) 16 true M (N) 16 n
Then P(n) 16 true M (N) 16 n
From P(n) 16 true M (N) 16 n
From Z 16 inductive and 142.
Since Z \subseteq M 16
Since Z \subseteq M 16
Since Z 16 inductive and 16
Now, Y 5
Y 6
Y 7
18
19
10
10
11
12
13
14

Extended MI Suppose that HE Pfi ^b true c'if If near such that ¹ ^k is true fu all ^k ^I ⁿ then p nti Then pln is true for all ⁿ ^C At proof Let ^Q ⁿ denote the combined statement of PCI PC ² Pln Thus Q ^l is the same as PCD and note that Q ⁿ holds means that PCD PCD pen hold The given ^a and Iii's can be restated as Lil Q ^l is true dis ^Q Cn is true ^Q ntl ^b true Now apply MI to Qbs

Cort. Let $X \subseteq N$ be a finite set $(say \#(x) = n$, i.e. there are $n(\epsilon A)$ many distint elements in \times). Then X has a (sue) greatest element ⁱ smallest element Proof By MI. (Exercise) Cor 2. I is the smallest element in N and M is an infinite ret (shat is, not a funite ret). Proof Let $N_0 = 1 \cup \{n \in \mathcal{N}: 1 \leq m$ Then, as Me is seen to be virdnotive and contains 1, one has $N_6 = N$ and so any $n \in \mathbb{N} \setminus \{\cdot\}$ is biggarthan |. For the 2nd assertion, note that any $n \in \mathbb{N}$ is smaller than $n+1$ (which is

Well-Order Principle for N. Let X be a nonempty set of natural numbers.

(I) If X is finite then it has the smallest and the largest elements.

(II) X has the largest elements if and only if $($ iff $)$ there exists a natural number n dominating (bigger than or equal to) every members of X. [Hint on Proof: induction over n].

Let Z denote the set of all integers, that is $Z: = \{ n: n = 0, \text{ or } n \text{ is a natural number or } -n \text{ is a natural number.}\}$.

Generalised Well-Order Principle for Z. Let X be a nonempty subset of Z.

(I) Let n be a natural number such that -n < x for all x in X (such n does exist in the case when Z is finite). Then $\{n+x: x \in X\}$ is a subset of N.

(II) If X is finite then it has the smallest and the largest elements.

(III) X is finite iff there exist natural numbers n and m such that $-n < x < m$ for all x in X.

-
-
-
-
-
- ś,
- ÷,
- ÷,
- ÷, ł,
-
- $\frac{1}{2}$
-
-
-
-
-